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Gasoline-vapor condensate (BGVC) or condensed vapors from gasoline blended with methyl t-butyl ether
(G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME) diisopropyl ether (G/DIPE), etha-
nol (G/EtOH), or t-butyl alcohol (G/TBA) were evaluated for developmental toxicity in Sprague-Dawley
rats exposed via inhalation on gestation days (GD) 5-20 for 6 h/day at levels of 0 (control filtered air),
2000, 10,000, and 20,000 mg/m?>. These exposure durations and levels substantially exceed typical con-
sumer exposure during refueling (<1-7 mg/m>, 5 min). Dose responsive maternal effects were reduced
maternal body weight and/or weight change, and/or reduced food consumption. No significant malfor-
mations were seen in any study. Developmental effects occurred at 20,000 mg/m> of G/TAME (reduced
fetal body weight, increased incidence of stunted fetuses), G/TBA (reduced fetal body weight, increased
skeletal variants) and G/DIPE (reduced fetal weight) resulting in developmental NOAEL of 10,000 mg/m?
for these materials. Developmental NOAELs for other materials were 20,000 mg/m? as no developmental
toxicity was induced in those studies. Developmental NOAELs were equal to or greater than the concur-
rent maternal NOAELs which ranged from 2000 to 20,000 mg/m?>. There were no clear cut differences in
developmental toxicity between vapors of gasoline and gasoline blended with the ether or alcohol

oxygenates.

© 2014 Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecom-

mons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The 1990 amendments to the Clean Air Act (CAA) mandated the
use of oxygenates in motor gasoline. In 1994, the U.S. Environmen-
tal Protection Agency (EPA) issued a final rule under the Act which
added new health effects information and testing requirements to
the Agency’s existing registration requirements. As described in
more detail in a companion paper (Henley et al., 2014), require-
ments include inhalation exposures to evaporative emissions of
the gasoline or additive in question. The health endpoints include
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assessments for standard subchronic toxicity, neurotoxicity, geno-
toxicity, immunotoxicity, developmental and reproductive toxicity,
and chronic toxicity/carcinogenicity. The results of chronic toxicity
testing of gasoline and gasoline combined with MTBE have already
been reported (Benson et al., 2011) and reported elsewhere in this
issue are the findings for are the findings for subchronic toxicity
testing (Clark et al., 2014), genotoxicity (Schreiner et al., 2014),
neurotoxicity (O’Callaghan et al., 2014), immunotoxicity (White
et al., 2014), reproductive toxicity (Gray et al., 2014), and develop-
mental toxicity testing in mice (Roberts et al., 2014). This paper
describes the results of developmental toxicity testing in rats.

2. Materials and methods

Six separate studies were conducted by ExxonMobil Biomedical
Sciences, Inc. (EMBSI) Mammalian Toxicology Laboratory, Annan-
dale, New Jersey, of a gasoline vapor condensate (BGVC) and vapor
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condensates of gasoline mixed with methyl-t-butyl ether (G/MTBE),
ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME),
ethanol (G/EtOH), or t-butyl alcohol (G/TBA). The gasoline/diiso-
propyl ether (G/DIPE) study was conducted at Huntingdon Life
Sciences Princeton Research Center, East Millstone, NJ. Both of
the laboratories are accredited by the Association for Assessment
and Accreditation of Laboratory Animal Care (AAALAC International).

2.1. Test material preparation and characterization

Gasoline and gasoline/oxygenate vapor condensates were pre-
pared and supplied in 100 gallon gas cylinders by Chevron
Research and Technology Center (Richmond, CA). The test material
was dispensed as needed at the testing facility from the 100 gallon
cylinders into 5-gallon cylinders using nitrogen pressurization. The
methodology for preparation and analytical characterization of the
samples is described in a companion paper (Henley et al., 2014).

2.2. Animal selection and care

The test animals were Cesarean-originated Virus Antibody Free
(VAF) Crl:CD®(SD)IGSBR outbred albino rats supplied by Charles
River Laboratories, Inc, Raleigh, NC. Sexually mature virgin females
were allocated to the study groups after confirmation of mating.
Sexually mature males were used for mating purposes only in
the EMBSI studies and not involved in the actual exposures to test
materials. HLS employed timed mated females shipped from
Charles River Laboratories to arrive no later than GD 4 for the
G/DIPE study.

Certified Rodent Diet, No. 5002; (Meal) (PMI Nutrition Interna-
tional, St. Louis, MO) was available without restriction. Analysis of
each feed lot used during this study was performed by the manu-
facturer. Water was available without restriction via an automated
watering system. There were no known contaminants in the feed
or water expected to interfere with the results of this study.
Animals were without food and water while in the exposure
chambers.

2.3. Housing and environmental conditions

Animals were housed individually in suspended stainless steel
wire mesh cages. During exposure periods, animals were individu-
ally housed in stainless steel, wire mesh cages within a 1000 I
stainless steel and glass whole-body exposure chamber. A twelve
hour light/dark cycle controlled via an automatic timer was pro-
vided. For all studies temperature and relative humidity were
maintained within the specified range (18-24 °C, and 30-70% rel-
ative humidity, respectively). Light (maintained approximately
30-40 foot-candles at 1.0 m above the floor) and noise levels
(maintained below 85 dB) in the exposure room were measured
pretest and at the beginning, middle and end of the study. Oxygen
levels in the exposure chambers were maintained between 19.0
and 20.7%.

2.4. Experimental design

The experimental design is described in Table 1. Untreated ani-
mals were mated (1 nulliparous female with 1 male) until suffi-
cient presumed pregnant females were identified by the presence
of a copulatory plug in the vagina. Plug positive female rats were
distributed by body weight into four different exposure groups
(25/group) on gestation day [GD] 0; for the G/DIPE study, timed-
pregnant animals were distributed by body weight on GD 4. Pre-
sumed pregnant females were exposed to 0 mg/m> (air control),
2000 mg/m>, 10,000 mg/m> and 20,000 mg/m?>, 6 h/day from GD 5

to GD 20. The highest exposure level represented approximately
50% of the lower explosive limit (LEL) for each material.

2.5. Administration of test substance and exposure schedule

The experimental and control animals were placed into whole-
body inhalation chambers operated under dynamic conditions for
at least 6 h per day after target exposure levels were reached from
GD 5 through GD 20. The animals remained in the chambers for at
least an additional 23 min (theoretical equilibration time) while
the test atmosphere cleared.

Females were exposed in 1.0 M3 stainless steel and glass cham-
bers operated at a flow rate approximately 12-15 air changes/hour.
Flow rate and slightly negative pressure were monitored continu-
ously and recorded approximately every 30 min.

The control group was exposed to clean filtered air under
conditions identical to those used for groups exposed to the test
substance. The test substance was administered fully vaporized
in the breathing air of the animals. The chamber concentrations
were measured in the breathing zone of the rats by on-line gas
chromatography (GC). These chromatographic analyses were used
to assess the stability of the test substance over the duration of the
study. Analytical concentrations of G/DIPE in the HLS study were
determined by infrared spectrometry. Additionally, sorbent tube
samples were collected once weekly and stored in a freezer for
analysis by a detailed capillary GC method to compare component
proportions of the test material atmosphere with the liquid test
material.

Distribution samples were drawn from twelve different points
within the exposure chambers at each exposure level during the
validation of the exposure system to determine homogeneity of
exposure concentrations. A particle size determination of the
aerosol portion of the test atmosphere was conducted at least once
during the chamber trials from the 0 mg/m> and 20,000 mg/m>
concentrations.

2.6. Experimental evaluation

Animals were examined for viability at least twice daily during
the study. Body weights were taken prior to selection, and on GD 0
(EMBSI studies), 5, 8, 11, 14, 17, 20 and 21. Food consumption was
measured for mated females on GD 5, 8, 11, 14, 17, 20 and 21. A
clinical examination was given to each female prior to selection,
and daily during gestation. Additionally, group observations of
the animals for mortality and obvious toxic signs while in the
chambers were recorded at 15, 30, 45 and 60 min after initiation
of the exposure and regularly during each exposure.

Dams were sacrificed by CO, asphyxiation followed by exsan-
guination on GD 21. A gross necropsy was performed on all con-
firmed-mated females. Uterine weights with ovaries attached
were recorded at the time of necropsy, uterine contents were
examined, corpora lutea and the numbers and locations of implan-
tation sites, early and late resorptions, and live and dead (alive or
dead in utero) fetuses were counted. The uteri of all apparently
non-pregnant females were stained with 10% ammonium sulfide
to confirm non-gravid status. Evaluations of dams during necropsy
and subsequent fetal evaluations were conducted without knowl-
edge of treatment group in order to minimize bias.

Fetuses were counted, weighed and examined externally for
gross malformations and variations. Fetal sex was determined by
external examination and confirmed internally only on those
fetuses receiving visceral examinations. Fetuses were euthanized
by CO, asphyxiation in the EMBSI studies and by intraperitoneal
sodium pentobarbitol in the HLS study.

The viscera of approximately one-half of the fetuses of each lit-
ter were examined by fresh dissection (Staples, 1974; Stuckhardt
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Table 1
Experimental design.

Laboratory

ExxonMobil Biomedical Sciences, NJ

Huntingdon Life Sciences, NJ

Species/strain/source
Test substance(s)
Wt./age at mating
Group sizes

Exposure levels [mg/m?]
Exposure days [6 h/d]
Necropsy

24-25 mated females
0, 2000, 10,000, 20,000
GD 5-20

GD 21

VAF Crl: CD®(SD)IGSBR; Charles River; NC
BGVC, G/MTBE, G/ETBE, G/TAME, G/EtOH, G/TBA
224-325g; 12-13, 13-14, 14-15 weeks

VAF Crl: CD®(SD)IGSBR; Charles River; NC
G/DIPE

216-280 g; 10-12 weeks

24 mated females

0, 2000, 10,000, 20,000

GD 5-20

GD 21

Age at mating in EMBSI studies varied by 1 week with youngest animals at 12-13 weeks and oldest at 14-15 weeks depending on the study.

and Poppe, 1984) prior to decapitation of the fetus. The heads were
preserved in Bouin’s solution for at least two weeks, then rinsed
and subsequently stored in 70% ethanol. Free-hand razor blade sec-
tions of the Bouin’s-fixed fetal heads were examined for the pres-
ence of abnormalities. The remaining live fetuses (alive in utero)
were euthanized and eviscerated, processed by double staining
with Alizarin red and Alcian blue, and examined for the presence
of bone and cartilage malformations and ossification variations.
The fetal skeletons were preserved in glycerine with thymol after
they were processed and stained.

2.7. Statistical analysis

All statistical analyses were performed with comparison to con-
current control data. Statistical methods in the EMBSI studies
included evaluation of equality of means done by an appropriate
one way analysis of variance and a test for ordered response in
the dose groups. Bartlett’s test was performed to determine if the
dose groups had equal variance followed by standard one way
analysis of variance (Snedecor and Cochran, 1989). If the variances
were equal, subsequent testing was done using parametric meth-
ods, otherwise nonparametric techniques were used. Continuous
data were tested for statistical significance as follows: Where
applicable, percentages were calculated and transformed by Coch-
ran’s transformation, followed by the arc sine transformation
(Snedecor and Cochran, 1989). Both the raw percentages and the
transformed percentages were tested for statistical significance.

For the parametric procedures, a standard one way ANOVA
using the F distribution to assess significance was used (Snedecor
and Cochran, 1989). If significant differences among the means
were indicated, Dunnett’s test was used to determine which treat-
ment groups differed significantly from control (Dunnett, 1964). A
standard regression analysis for linear response in the dose groups
was performed, which also tested for linear lack of fit in the model.

For the nonparametric procedures, the test of equality of means
was performed using the Kruskal-Wallis test (Hollander and
Wolfe, 1973). If significant differences among the means were
indicated, Dunn’s Summed Rank test was used to determine which
treatment groups differed significantly from the control (Hollander
and Wolfe, 1973). In addition to the Kruskal-Wallis test, Jonckhe-
ere’s Test for monotonic trend in the dose response was performed
(Hollander and Wolfe, 1973). Bartlett’s test for equal variance was
conducted at the 1% level of significance. All other tests were con-
ducted at the 5% and 1% level of significance. Body weight and food
consumption data were not analyzed for non-pregnant females.

Means and standard deviations were calculated for animal,
exposure and chamber environmental data. The coefficient of
variation also was calculated when considered relevant for the
exposure data. Fetal body weight was analyzed by a mixed model
analysis of variance that used the number of litters as the basis for
analysis and effectively used the litter size as a covariate. The
model considered dose group, litter size, and fetal sex as explana-
tory variables. If the overall effect of dose, or the dose by sex effect,

was statistically significant the dose groups means were tested
pairwise vs. the control group using least squares means. The least
squares means allowed comparisons that accounted for differences
in litter size and sex. The mathematical model was based on a
paper by Chen et al. (1996). The analysis was run using SAS with
code suggested in Little et al. (1997).

The analysis of anomalies (malformations or variations) was
based on a Generalized Estimating Equation (GEE) application of
the linearized model (Ryan, 1992). The model used the litter as
the basis for analysis and considered correlation among littermates
by incorporating an estimated constant correlation and the litter
size as a covariate. If the overall effect of dose, or the dose by sex
effect, was statistically significant the dose groups were tested
pairwise vs. the control group using least squares means. In addi-
tion to the developmental category-specific anomalies tested, a
series of combined analyses were performed within each category
as applicable: These categories were Combined Malformations and
Variations for All Fetuses; for Alive Fetuses; for Dead Fetuses; Mal-
formations for All Fetuses; for Alive Fetuses; for Dead Fetuses;
Variations for All Fetuses; for Alive Fetuses; for Dead Fetuses

Statistical analyses in the Huntingdon study were comparable
to the methods employed at EMBSI and were performed at Hun-
tingdon Life Sciences Ltd., Alconbury, Huntingdon, Cambridgeshire,
England.

2.8. Compliance

These studies were conducted in accordance with the United
States Environmental Protection Agency’s (EPA) Good Laboratory
Practice Standards (US EPA, 1994), and complied with all appropri-
ate parts of the Animal Welfare Act Regulations (USDA, 1989,
1991). The studies also met the requirements of US EPA OPPTS
870.3700 guidelines for prenatal developmental toxicity studies
(US EPA, 1998).

3. Results
3.1. Chamber monitoring

The analytically measured exposure levels of the airborne test
materials were at least 99% of the targeted exposure levels
(Table 2). Chamber environmental conditions averaged 23-24 °C
and 43% relative humidity. Particle sizing results indicated that
the atmospheres were essentially vapor only (data not presented).

Table 3 provides a profile of the major components in the start-
ing test materials. Analysis of the major components in the test
materials and the chamber atmospheres showed an acceptably
close comparison between the starting condensates and the cham-
ber vaporized test material sampled weekly throughout the studies
(data not presented). The data was consistent from week-to-week
during the study indicating stability of the test material and the
atmosphere generation techniques.
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Table 2
Measured exposure concentrations compared to target concentrations.

Exposure levels

Exposure chamber concentrations - mg/m? # standard deviation

BGVC G/MTBE G/TAME G/ETBE G/DIPE G/EtOH G/TBA
2000 mg/m?> 1979 +98 2101 +97 2073 £ 66 1988 + 88 1982 +93 201775 2020+ 106
10,000 mg/m* 10,676 £310 10,725 + 541 10,149 + 441 10,327 +280 10,072 £ 546 10,198 + 285 10,395+ 229
20,000 mg/m> 20,638 £452 20,409 + 1038 20,303 + 642 20,541 +518 19,776 + 961 20,755 £398 20,777 £394
Molecular Wt.* 73.8 73.7 65.9 771 76.5 65.9 721
@ Average molecular weight of hydrocarbons in condensate samples.
Table 3
Representative hydrocarbon distribution in vapor condensate test materials.
Hydrocarbons detected in test material (area percent)®
BGVC B/MTBE G/EtOH G/TAME G/ETBE G/DIPE G/TBA
Isobutane 3.6 2.2 2.2 1.9 2.0 2.0 3.0
n-Butane 15.2 111 11.6 104 10.6 115 9.9
Isopentane 35.1 31.0 34.0 33.6 325 322 25.2
n-Pentane 13.2 9.1 10.2 103 9.8 9.6 11.6
trans-2-Pentene 2.5 2.0 21 23 21 2.1 21
2-Methyl-2-butene 3.8 29 3.1 34 3.2 3.1 3.2
2,3-Dimethylbutane 1.6 0.9 2.2 1.5 14 1.3 1.6
2-Methylpentane 6.3 4.5 5.1 5.6 5.1 4.5 6.1
3-Methylpentane 3.6 2.6 29 3.2 29 2.7 3.8
n-Hexane 3.0 21 24 2.6 24 1.8 34
Methylcyclopentane 1.5 1.1 1.2 14 13 1.0 1.6
2,4-Dimethylpentane 1.0 0.9 1.0 1.2 1.0 1.0 1.0
Benzene 21 1.5 1.6 2.0 1.8 1.8 2.0
2-Methylhexane 1.1 1.0 1.1 1.2 1.1 1.1 1.3
2,3-Dimethylpentane 1.1 1.0 1.1 13 1.1 1.1 13
3-Methylhexane 1.3 1.1 1.2 1.5 1.3 1.3 1.5
Isooctane 13 1.2 1.3 1.5 1.4 1.4 1.5
Toluene 3.0 2.5 24 3.2 2.7 2.6 3.4
MTBE 213
EtOH 133
TAME 119
ETBE 16.3
DIPE 17.8
TBA 16.5

¢ Values for these 18 reference hydrocarbons were derived pre-study (Henley et al., 2014). A total of 131 peaks were separated and identified for the BGVC study. The
reference hydrocarbons comprised over 81% of the total mass but are normalized to 100% to ease comparison between laboratories.

Tables 4-8 summarize the comparative results of all the studies.
To facilitate comparisons of extensive data across test materials
the data in Tables 4-6 are presented for the 20,000 mg/m> groups
only. Tables 7 and 8, which address specific endpoints (stunted
fetuses and total skeletal variations), present results of all dose lev-
els. Text describes specific effects within studies for individual
dose groups.

3.2. Maternal clinical in life observations, survival and pregnancies

All females survived to study termination. No significant clinical
signs were observed during any of the studies. Low incidences of
alopecia were seen in the abdominal areas and limbs among trea-
ted and control animals in each study. Red nasal discharge and
chromodacryorrhea were observed at higher doses in various ani-
mals in all studies and were considered a common reaction to
inhalation exposure and mild stress in rats.

The number of pregnant animals was similar in all studies. Non-
pregnant females were identified at terminal sacrifice by the
absence of implantation sites in the uterus. With the exception
of the G/ETBE 2000 mg/m° group which contained 3 non-pregnant
rats, only one or two females were non-pregnant in any group of
the other test materials. The incidence of three non-pregnant ani-
mals in the lowest dose group of G/ETBE was not considered test
material significant as the 10,000 and 20,000 mg/m> groups con-
tained only one non-pregnant animal each. Although all females

in the G/TAME 20,000 mg/m> group were pregnant, one female
delivered early on GD 20 and data from this litter were not
included in the calculations.

3.3. Gestation body weight and food consumption

No significant body weight changes (Table 4) or food consump-
tion effects (Table 5) were observed in females exposed to BGVC.
For GJoxygenate blends maternal toxicity was reflected in
decreased body weight (G/TBA), decreased body weight gain (usu-
ally during the first days of exposure), and/or decreased food con-
sumption at 20,000 mg/m? in all studies and also at 10,000 mg/m?
for G/DIPE and G/TBA.

Animals in the 20,000 mg/m® G/MTBE and G/ETBE studies
showed statistically significant decreases in body weight gain
and food consumption for the GD 8-11 interval. Although G/ETBE
also had decreased food consumption in the GD 11-14 interval
which contributed to a decrease in food consumption in the GD
5-20 interval, neither corrected body weight nor total body weight
gain were significantly different from control.

For animals exposed to G/EtOH slight maternal toxicity was
indicated by statistical significant decreases in body weight
changes at the GD 20-21 and GD 5-21 intervals at 20,000 mg/m?
and decreasing linear trends in food consumption over all doses
at GD 5-20 interval. Only part of the difference in weight gain late
in gestation could be attributed to differences in uterine weight.
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Table 4
Body weights and weight changes in pregnant rats exposed to vapor condensates of gasoline or gasoline/oxygenate blends at 20,000 mg/m>,
Gestation days BGVC*N'=24  G/MTBE*N"=24  G/TAME® N'= G/ETBE* N'=24  G/DIPE® N"=22 G/EtOH* N"=24  G/TBA* N"=23
(GD) EMBSI EMBSI EMBSI EMBSI Huntingdon EMBSI EMBSI
Group mean maternal body weights (grams # std. deviation)”
GDO 2728 +16.5 266.5+14.8 2703 +14.8 269.9+13.7 ND' 265.2+134 2604 +14.3
(2733 £17) (265.9 +13) (269.7 £17.1) (270 + 14.6) (265.2+13.3) (260.6 +16.7)
GD 5 302.7£15.8 291.8+243 300.7 £17.2 295.5+19.1 245+15.2 296.4+£18.2 288.9+14.7
(3033 +18.3) (297.8+12.7) (299.5 +19.4) (299.2 +16.7) (244 + 14.6) (297.6 +16.0) (293.5+18.8)
GD 8 308.2+15.3 303.5+17.2 302.7 £ 14.1 298.9+18.5 256+16.3 303.1+£20.1 288.9 £14.7¢
(311.6 £19.7) (305.4+12.2) (306.5+18.9) (305.4+18.1) (259+12.8) (305.8 +18.0) (302.9 £20.3)
GD 11 319.8+15.8 312.9+16.4 310.8+16.8 307.3+19.1 275+19.5 314.6+21.6 298.2 +15.2¢
(323.7 £20.9) (320.1£12.6) (316.0 £ 22.6) (317.2£19.3) (281 +14.9) (320+19.1) (316.7 £21.5)
GD 14 332.0+16.3 325.7+18.0 318.8+18.8 317.6+19.3 290+ 19.5 327.9+25.1 309.9 £ 15.9°
(336.7 £22.8) (3343+£14.8) (328.9+25.3) (330.6+£21.4) (301+17.0) (334.2+19.3) (330+23.7)
GD 17 365.8+17.3 358.1+224 348.5+20.2 347.5+20.8 321+249 358.6 +27.7 340.0+18.0¢
(367.0 £ 24.4) (363.3+16.9) (356.6 + 28.0) (358.8 £27.1) (332+£22.2) (366.5 +20.5) (360.1 +25.8)
GD 20 416.4 +20.5 409.1 +28.8 3953+223 394.8+22.9 365+27.1 410.1+32.9 385.5 +20.7¢
(416.8 +29.5) (410.4 £20.3) (405.0 + 33.6) (404.2 £33.1) (378 +£26.3) (418.8 £26.4) (409.4 £30.9)
GD 21 439.5+20.5 427.3+29.0 4143 +253 413.5+26.9 374+274 423.7 +29.7 404.3 £22.4¢
(439.1 £33.3) (430.3 £22.1) (422.6 £34.7) (420.9 +35.7) (388 +28.6) (441 +27.7) (428.4+33.2)
Uterus wt. 1188+11.4 1144 +14.8 1083+12.3 104.8 +14.9 96 £15.7 1129+223 104.1 £10.7¢
(115.5 £ 19.9) (111.6£12.7) (110.9 £21.4) (104.8 £21.9) (101 +19.4) (119.5+21.4) (1143 £13.0)
GD 21C° 320.7 £16.0 3129183 306.0 £21.2 308.8 +20.7 273+159 310.8 £23.8 300.2£19.1
(323.6 +21.4) (318.7 £16.1) (311.7 £25.7) (315.5 £20.8) (286 +18.1) (321.5+18.8) (314.2 £23.0)
Group mean maternal body weight changes (grams + std. deviation)”
GD 0-5 29977 253+18.9 30.5+8.5 25.6+9.9 NDf 31.2+7.7 28.5+6.1
(30.0+7.2) (31.9%8.5) (29.8+7.1) (29.2+6.5) (324+7.1) (32.5+8.5)
GD 5-8 5.5+6.1 11.7£14.7 2.02+7.9¢ 34+77 11+4.7¢ 6.8+5.6 0+5.9¢
(8.3+5.5) (7.6 £5.7) (7.0%5.1) (62+5.2) (15+4.5) (8.2+5) (9.8+6.1)
GD 8-11 11.7+52 9.4 +6.7¢ 8.1+4.2 8.4 +3.4¢ 20+5.5 11.5+5.1 9.3+3.6°
(12.1+42) (14.8 + 4.6) (9.6£6.2) (11.8 +4.6) (22+4.7) (143 +4.7) (13.8 +4.4)
GD 11-14 12.2+£5.1 12.8+44 8.0+ 6.6° 104 +3.8 15 +4.0° 13.3+4.7 11.8+54
(13.0+4.7) (142 +5.4) (129 +5.1) (13.4+4.7) (20£4.2) (142 +43) (13.2+4.1)
GD 14-17 33.8+6.4 324+6.3 29.7+55 299+64 31+£6.8 30.7+6.1 30.1+£5.7
(30.3 £5.8) (29.0 +5.5) (27.7 +7.4) (28.2+9) (31£7.3) (322+7.8) (30.2 +5.3)
GD 17-20 50.5+£8.2 51.0+£8.0 46.7+11.0 473 +6.2 44+7.7 51.5+8.9 455+6.4
(49.7 £ 9.0) (47.1+8.7) (48.4 + 8.6) (45.4 + 10) (46.6 +7.6) (52.4 +9.6) (49.3 +6.9)
GD 20-21 23.1+6.3 18.1+46 19.0+7.0 18.8+5.8 8.0£5.1 17.7 £ 6.6¢ 18.8 £4.6
(22.4£83) (19.9 £ 8.6) (17.6 £6.3) (17.4£9.5) (10.0 £5.2) (22.2 £5.6) (19.0 £ 4.4)
GD 5-21 136.8+11.4 135.5+21.0 113.1 £20.1 118+17.1 129.0+16.0 129.2 +21.3¢ 115.4 £15.7¢
(135.8 £21.0) (132.5+17.5) (123.1£21.8) (104.5 +91.0) (144 +20.6) (1434+21.1) (135.3£20.3)
GD 0-21 166.6 £ 12.4 160.8 +21.4 144.0 £ 20.0 143.6+18.8 ND' 159.4 £20.8 143.8 £15.4°
(165.9 £22.9) (164.4+£18.1) (152.9+£2.5) (151.3 £24.9) (175.8 £23.9) (167.8 £23.2)
GD 0-21C° 479+12.6 464 +13.5 358+14.3 389+24 ND' 46.5+159 39.8+13.9°
(504 +11.5) (52.8 +13.0) (42 £15.2) (46 £11.7) (563 +11.7) (53.5 + 15.6)
GD 5-21C° NC?® NC® NC?® NC& 29+10.6° NC?® NC&
(43+11.1)
@ Concurrent study control value for each endpoint in parenthesis.
b Exposure period is GD 5-20.
¢ Statistically significantly lower compared to concurrent controls at p < 0.01.
d Statistically significantly lower compared to concurrent controls at p < 0.05.
€ GD 21 C (day 21 corrected) - day 21 body weight minus uterine content.
T ND - data not collected for study performed at Huntingdon Life Sciences.
& NC - values not calculated in EMBSI studies.
h

For G/TAME animals, significant decreases in body weight change
occurred at 20,000 mg/m> at the GD 5-8 and GD 11-14 intervals
and food consumption intervals of GD 5-8, GD 8-11, GD 11-14
and GD 5-20. At 10,000 mg/m?>, a statistically significant decrease
in food consumption at GD 5-8 was not considered evidence of
maternal toxicity since no other time interval was affected and
no effects were seen on maternal weight or weight gain.

In the G/TBA study, maternal toxicity during the first half (GD
5-14) of the exposure period was seen in decreased food consump-
tion in the 10,000 and 20,000 mg/m°> groups and reduced weight
gain and maternal body weights throughout gestation at the
10,000 and 20,000 mg/m> exposure levels. The gravid uterine
weight at 20,000 mg/m> was statistically significantly lower than
the concurrent control. However the lower gravid uterine weight
may have been due to the non-significant reduction in average
litter size performance for G/TBA animals. In the G/DIPE study,
transient reduction in maternal weight gain during the early days

N - Mean number of females in 20,000 mg/m? group through most of the study.

of the exposure period at 20,000 mg/m?> was partially resolved by
GD 21. Reduction in food consumption, although statistically sig-
nificant intermittently, did not exceed 10% during the exposure
period. A decrease in uterine weight to 96% of concurrent control
value was not statistically significant but likely contributed to
the decrease in the overall GD 5-21 body weight interval at
20,000 mg/m>.

3.4. Reproductive and fetal effects

No treatment related statistically significant differences
between test material treated groups and concurrent controls were
seen for uterine data (Table 6). Implantation sites, resorptions,
mean litter size, fetal number of viable fetuses and fetuses per lit-
ter were comparable to concurrent controls in each study. Corpora
lutea, established before exposure began, were comparable to con-
current controls with the exception of G/TBA. For this material a
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Table 5
Mean food consumption of pregnant rats exposed to vapor condensates of gasoline or gasoline/oxygenate blends at 20,000 mg/m?>.
Gestation days (GD)" BGVC? G/MTBE? G/TAME? G/ETBE? G/DIPE? G/EtOH? G/TBA*
Ne=24 N& =24 N& =24 N&=24 N&=22 N& =24 N& =24
EMBSI EMBSI EMBSI EMBSI Huntingdont EMBSI EMBSI
Mean food consumption (mean grams/rat/period)
GD 0-5 122.5-+£8.7 118.8£16.2 121.5+£13.3 117.3£145 ND¢ 122.1+£13.2 114.7£9.4
(1202 +10.4) (121.3£12.6) (121.2£14.7) (119.6 £13.1) (123.0£9.2) (117.3£13.0)
GD 5-8 70.5+5.2 67.9+7.6 65.8 £6.2¢ 649+8.5 79+6.0 69.4+8.7 60.3 +4.6°
(73.5+82) (72.1+838) (72.0+7.0) (70.6 + 8.4) (81+6.0) (73.4+7.4) (71.6+8.2)
GD 8-11 69.8+53 66.5 +7.0¢ 64.2 +7.8¢ 61.0 £5.8¢ 78 £5.7 69.2+74 60.0 + 4.6°
(73.8+6.2) (71.9+£6.6) (70.4+7.8) (69.6 +7.8) (85+7.1) (73.6£7.8) (71.3+9.3)
GD 11-14 71555 72.1+6.3 64.2 £6.7° 64.1 £6.5¢ 78 +4.0¢ 71382 63.5 £4.6°
(74.5 +6.7) (74.1 £ 8.5) (70.7 £ 10.4) (72.4+7.4) (85+7.1) (75.3 +7.0) (71.1 £ 8.5)
GD 14-17 77.8+5.6 77.0+6.9 69.3+6.3 68.3+6.7 79+4.4 743 +8.6 703 6.5
(78.0+5.8) (77.0£6.3) (72.3+11.2) (71.7 £10.7) (81+4.5) (77.7. £ 5.7) (72.9+7.8)
GD 17-20 81.3+6.0 82.6+8.0 75.6+7.6 74+6.3 73+43 803+7.8 76.5+6.7
(81.7+7.6) (80.2+5.8) (76.4+9.1) (77.3+9.2) (74+4.5) (827 +6.1) (77.8+7.5)
GD 20-21 25127 269+5.5 234+39 229+3.7 46 +7.8° 239+34 23238
(27.5+6.7) (243 £5.8) (23.8+3.9) (24.5 + 4.4) (53+8.1) (25.6+3.1) (23.9+3.3)
GD 5-20 371.0+223 366.0 +29.1 338.1£28.8¢ 332.4+29.5° 72 £3.8° 364.5+38.2 330.6 +20.8°
(380.9 £ 29.8) (375.3 £29.7) (362.7 £37.3) (361.5 +3.6.) (76 £4.7) (381.3 £29.4) (364.8 £37.7)
GD 0-21 518.6 £26.8 513.2+404 483.3+39.2 472.5+43.1 ND® 504.5 +41.1 468.5 +23.5°
(528.6 +41.6) (520.0.+ 38.8) (508.1 £51.5) (505.6 + 49.6) (529.2 +38.8) (505.9 + 50.5)
@ Concurrent study control value for each endpoint in parenthesis.
b Exposure period is GD 5-20.
¢ Statistically significantly lower compared to concurrent controls at p < 0.01.
d Statistically significantly lower compared to concurrent controls at p < 0.05.
e

ND - data not collected for study performed at Huntingdon Life Sciences.
f

& N=Mean number of females in 20,000 mg/m> group throughout most of study.

statistically significant non-dose responsive decrease in number of
corpora lutea in the 2000 and 20,000 mg/m?> groups occurred with
a subsequent reduction in implantations/litter which was not sta-
tistically significant when analyzed with corpora lutea as a covar-
iate. Only one early delivery occurred, this in the 20,000 mg/m> G/
TAME group for a female who delivered early on GD 20 and data
from this litter were not included in the calculations and the early
delivery was not associated with exposure. Fetal deaths, which
occurred at 20,000 mg/m> only in G/ETBE and G/EtOH studies
and at low incidence similar to controls, were not associated with
exposure.

3.5. Fetal body weights

Mean combined fetal weights of all BGVC - exposed groups
were decreased relative to concurrent controls. However, this dif-
ference was considered to be a spurious finding because fetal
weights in all of the BGVC exposure groups were within the labo-
ratory control group range of 5.3-5.48 g for the other studies in the
test program (Fig. 1), no dose-response occurred, and the mean lit-
ter size in this control group (15.0) was smaller than the litter sizes
for the exposed groups [15.5, 15.6, 16.2 in 2000, 10,000 and
20,000 mg/m> groups, respectively]. Smaller litter sizes tend to
produce heavier offspring. Exposure to G/TAME and G/TBA resulted
in 4% and 3% decreases in fetal body weight respectively at
20,000 mg/m?>. In the G/TBA study fetal body weight did not differ
between groups when analyzed with litter size or litter size and
fetal sex as covariates but showed statistically significant reduction
at 20,000 mg/m> when mean corpora lutea count was added as a
covariate. Thus, it is not clear whether exposure to G/TBA at
20,000 mg/m? is directly linked to decreased fetal body weight.
Fetal body weight in G/DIPE 20,000 mg/m? litters was statistically
significantly lower for females (5%) and combined sexes (3.3%)
compared to concurrent controls (Table 6).

In addition to a small reduction in fetal body weight at the
highest exposure level, G/TAME 20,000 mg/m> and 10,000 mg/m>

Huntingdon food consumption data calculated as g/kg/day for GD 5-20 duration, not as total for the entire period.

demonstrated a similar higher incidence of stunted fetuses (<4 g)
on an affected litter basis compared to concurrent controls
(Table 7). Control range for stunted fetuses on all studies was 4-
16%.

3.6. Fetal external observations

No significant increases in fetal external variations were seen in
any study. Random occurrences of malrotated paw, cleft palate,
kinked tail, exencephaly and exophthalmos were reported at vari-
ous dose levels. In the G/ETBE study a set of conjoined twins was
seen in a litter of a dam exposed at 20,000 mg/m>. None of these
findings were related to exposure.

3.7. Fetal visceral observations

Few visceral variations or malformations occurred in any study.
Reported incidental findings included retinal folds, hydroureter,
hydronephrosis, hydrocephaly, and umbilical artery on left side
of bladder (G/TAME, BGVC). None were attributed to the test article
exposures.

3.8. Fetal skeletal observations

Exposure did not induce skeletal malformations. No skeletal
malformations were reported in any study with the exception of
1 fetus/1 litter at 20,000 mg/m> G/DIPE with a vertebral anomaly
in which the right exoccipital and cervical arch #1 were fused,
and the thoracic centra #13 and lumbar centrum #1 were absent.
Skeletal variations (Table 7) included commonly observed findings
such as reduced ossification, unossified, asymmetric, bifid or hypo-
plastic sternebrae, rudimentary lumbar ribs, vertebrae with bifid
thoracic centra and dumbbell-shaped thoracic centra, rudimentary
14th vertebrae and cartilaginous variations. Only G/TBA
20,000 mg/m? litters showed a statistically significant increase in
skeletal variations on a per fetus basis primarily due to increased
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Table 6
Developmental toxicity: reproduction and fetal data of rats exposed from GD 5-20 to gasoline or gasoline/oxygenate vapor condensates at 20,000 mg/m>.
BGVC? G/MTBE? G/TAME? G/ETBE* G/DIPE*" G/EtOH? G/TBA?
EMBSI EMBSI EMBSI EMBSI Huntingdon EMBSI EMBSI
No. of females mated 25 (25) 25 (25) 25 (25) 25 (25) 24 (24) 25 (25) 25 (25)
No. of pregnant females 24 (24) 24 (24) 24° (25) 24 (25) 22 (23) 24 (25) 24 (25)
No. pregnancies aborted 0 0 0 0 0 0 0
No. early deliveries 0 0 1¢ 0 0 0 0
No. litters with viable 24 (24) 24 (24) 25 (25) 24 (25) 22 (23) 24 (25) 24 (25)
fetuses
Corpora lutea 176 £2.6 16.7+3.2 163 +1.8 15122 152+26 16.1+£24 15.1+2.7¢
(16.4£3.4) (16.0£1.9) (16.0+3.2) (15.9+1.5) (149+238) (16.4 £3.0) (163 £2.0)
Implantation sites 16.7+1.8 15.6+2.2 159+1.8 146+23 14024 155+33 14.7+2.1
(15.5+3.2) (15.5+1.8) (15.7 +£3.1) (14.6 +3.0) (13.5+2.7) (15.9 +2.9) (15.7 +1.8)
Preimplantation loss - % 4.6+6.9 5.1+10.5 22+39 3.2+44 7.6%9.1 46+158 23+41
(5.1 +12.6) (3.0£3.9) (1.6£2.7) (7.9+17.7) (9.3+13.5) (3.0+3.9) (3.7£5.3)
Resorptions mean + S.D. 0.42 +£0.72 0.33 £0.56 0.67+1.13 0.33+0.48 0.7+0.6 0.29 + 0.46 0.29 +0.55
(0.58 +0.83) (0.63 +0.77) (0.72 +0.84) (0.4 +0.58) (0.5+0.7) (0.32+0.56) (0.28 + 0.6)
Number of viable fetuses 390 (359) 366 (358) 366 (374) 342 (353) 292 (300) 365 (389) 345 (385)
Mean litter size 16.2+1.8 15.2+2.1 152+2.1 142+23 133+26 152+33 144+2.1
(15.0+3.1) (14.9+22) (15.0+3.1) (14.1+3.1) (13.0+2.6) (15.6 +2.9) (15.4+1.8)
Mean number of fetuses/
litter
Males + S.D 8.6+1.6 7.0+2.6 74+26 71+£21 6.1+£2.1 73+£3.1 64+15
(7.5+2.9) (7.2 £2.6) (7.4+2.5) (6.9£2.4) (63%1.7) (7.92.6) (7.8£2.1)
Females + S.D 7.7+23 83%26 78+23 71+£21 71+£25 79+29 8.0+2.1
(7.4 £2.6) (7.8£2.3) (7.6 £2.4) (72£2.2) (6.7 £2.0) (7.6 £2.4) (7.5£2.2)
Fetuses/implantation 0.98 + 0.04 0.98 £ 0.04 0.96 + 0.07 0.98 +0.03 0.95 + 0.06 0.98 +0.03 0.98 + 0.04
(0.97 +0.05) (0.96 +0.05) (0.95 +0.07) (0.95+0.1) (0.96 +0.1) (0.98 +0.04) (0.98 +0.04)
Resorptions/implantation 0.02 +0.04 0.02 +0.04 0.04 +0.07 0.02 +0.03 0.05 +0.03 0.02 +0.03 0.02 +0.04
(0.04 +0.05) (0.04 +0.05) (0.05 +0.07) (0.04+0.1) (0.04 0.05) (0.02 £ 0.03) (0.02 £ 0.04)
Postimplantation loss - % 2541 2136 42+70 25%33 52%52 2.1+3.0 23+38
(33+54) (42£54) (5.1£6.7) (4.6 £10.2) (3.4+4.7) (2.0+3.4) (1.9+3.8)
Fetal deaths mean +S.D 0 0 0 0.04£0.2 0 0.04£0.2 0
(0.04 +0.2) (0) (0.04 +0.2)
Mean body weight + S.D
Male fetuses 55+04 5.6+0.5 52+0.5 54+0.5 57+0.3 55+04 53+0.5
(5.8+0.4) (5.5 +0.4) (5.4+0.3) (5.5+0.4) (5.9+0.3) (5.6 £0.4) (5.4+0.4)
Female fetuses 52+04 5304 5.0+£0.5 51+04 54+0.3c 52+04 5.0+£0.3
(5.5+0.3) (5.2 £0.4) (5.2+04) (5.2+04) (5.6 £0.3) (5.4+0.3) (5.2+04)
Combined weights' 5.36%¢ (5.62) 5.42 (5.38) 5.10¢ (5.31) 5.25 (5.33) 5.54% (5.71) 5.37 (5.48) 5.16 (5.32)
Preimplantation loss = (corpora lutea minus implants)/corpora lutea.
Postimplantation loss = (implants minus live fetuses)/implants.
@ Concurrent study control value for each endpoint in parenthesis.
b Study performed at Huntingdon Life Sciences; 24 presumed pregnant animals at study initiation.
¢ G/TAME early delivery GD20, not included in calculations.
4 statistically significantly lower compared to concurrent controls at p < 0.01].
€ statistically significantly lower compared to concurrent controls at p < 0.05.
T Combined fetal body weight is least squares mean fetal weight adjusted for litter size in individual studies.
& BGVC all dose levels showed similar changes from controls and effect was not considered biologically significant.
Table 7
Incidence of stunted fetuses [weight < 4 g] in litters of rats exposed from GD 5 to 20 to vapor condensates of gasoline or gasoline/oxygenate blends.
Exposure level BGVC G/MTBE G/TAME G/ETBE G/DIPE G/ETOH G/TBA
EMBSI EMBSI EMBSI EMBSI Huntingdon EMBSI EMBSI
20,000 mg/m>
Litters affected® 224 324 5/24 5/24 0/22 4/24 4/24
% Affected” 8.3 12.5 20.8 20.8 0 16.7 16.7
10,000 mg/m’>
Litters affected® 324 1/24 5/24 1/24 224 2/24 3/23
% Affected” 125 4.1 20.8 4.1 8.3 8.3 13
2000 mg/m’>
Litters affected® 3/24 3/24 2/23 1/23 0/23 1/22 2/23
% Affected” 125 12.5 8.6 4.3 0 4.5 8.7
Control
Litters affected? 0/24 2/24 1/25 4/25 1/23 1/25 2/25
% Affected” 0 8.3 4 16 43 4 8

@ Litters affected = litters with stunted fetuses/total litters.
b % Affected = affected litters/total litters.

rudimentary ribs (16/24 litters, 67% compared to control 12/25

litters, 48%). An increase in skeletal variations identified at

10,000 mg/m> G/ETOH was attributed to chance rather than

exposure, as no increase occurred at 20,000 mg/m>.

4. Discussion

The test program was conducted to evaluate the potential for

developmental toxicity from exposure to vapors of gasoline or
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Table 8

Incidence of total skeletal variations in litter of rats exposed from GD 5 to 20 to vapor condensates of gasoline or gasoline/oxygenate blends.

Exposure level Litters with fetal skeletal variations

BGVC G/MTBE G/TAME G/ETBE G/DIPE G/ETOH G/TBA
EMBSI EMBSI EMBSI EMBSI Huntingdon EMBSI EMBSI
20,000 mg/m®
Litters affected® 14/24 14/24 16/24 18/24 12/22 15/24 20/24°
% Affected” 58.3 66.7 66.7 75 54.5 62.5 833
10,000 mg/m*
Litters affected” 11/24 15/24 16/24 18/24 14/24 21/24° 13/23
% Affected” 45.8 62.5 66.7 75 58.3 87.5 56.5
2000 mg/m>
Litters affected® 16/24 16/24 16/23 16/23 8/23 12/22 13/23
% Affected” 66.7 66.7 69.6 69.6 34.8 54.5 56.5
Control
Litters affected® 12/24 13/24 19/25 17/25 13/23 15/25 15/25
% Affected” 50 54.2 76 70.8 56.5 60 60
@ Litters affected = litters with affected fetuses/total litters.
b % Affected = affected litters/total litter.
¢ Statistically significant at p < 0.05 on a per fetus basis.
mg/m3
5.7
5.6
55
5.4 T
. B 0 mg/m3
5.3 = 2000 mg/m3
= 10000 mg/m3
5.2 = 20000 mg/m3
5.1 o
* p<0.05*
**p<0.01
5.0
4.9
4.8 T T T T T
BGVC G/MTBE G/TAME G/ETBE G/EtOH G/TBA

Fig. 1. Fetal body weights for offspring of rats exposed in EMBSI studies.

gasoline blended with oxygenates. The composition of the vapor
condensates used as test materials represent the real-world expo-
sure that occurs during vehicle refueling. Typical refueling expo-
sures are <1.0 mg/m> but can reach 7.0 mg/m>? under extreme
conditions (Clayton, 1993; NATLSCO, 1995). The highest exposure
concentrations in this collection of studies were approximately
2800-fold higher than measured “extreme” exposure levels during
refueling. The exposure duration in these tests, six hours per day, is
similar to occupational exposure and about 72-fold longer than
typical refueling exposures that last approximately five minutes.
Table 9 summarizes the NOAEL values for all studies. Maternal
NOAELs were based primarily on reduced body weight, body
weight changes and food consumption, most of which occurred
in the GD 5-8, GD 8-11, and/or GD 11-14 intervals which some-
times carried through the entire exposure period and were
reflected in the GD 5-21 body weight interval and/or the GD 5-
20 food consumption interval. These effects were relatively mild,
resulting in significant differences in maternal body weight only
for G/TBA, for which the decrements were less than 10% from con-
trol values. Although decreased body weight gain was seen in preg-
nant rats exposed to G/MTBE at 20,000 mg/m?>, no decreased body

weight or body weight gains were seen in the companion mouse
study (Roberts et al., 2014).

Developmental NOAELs were 20,000 mg/m?> for BGVC, G/MTBE,
G/ETBE, and G/EtOH. Although mean combined fetal weight in all
BGVC-exposed groups was decreased relative to the concurrent
control, these changes did not occur in a dose-responsive manner,
all groups had values similar to the range of control groups within
the testing program, and no such effect was observed upon birth
weight in the reproduction study with BGVC (Gray et al., 2014).
The difference was attributed to the smaller litter size of the con-
trol group [mean 15.0 vs. 16.2 in the 20,000 mg/m> group]. In
smaller litters, individual fetal weights tend to be heavier (Chen,
1993). In mice, average fetal body weight/litter was reduced at
BGVC 10,000 and 20,000 mg/m?> levels (Roberts et al., 2014). In
both rats and mice exposed to BGVC in our test program, reduced
ossification, which often accompanies true reductions in prenatal
growth, did not occur. Collectively, the weight of evidence from
data of reproduction and developmental studies conducted with
unleaded gasoline vapor do not support specific or selective harm
to prenatal development. NOAELs of 10,000 mg/m> for G/TAME,
G/DIPE and G/TBA were based on reduced fetal body weights and
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Table 9
No observed adverse effect levels.
NOAELS BGVC G/MTBE G/TAME G/ETBE G/DIPE G/ETOH G/TBA
(mg/m3) EMBSI EMBSI EMBSI EMBSI Huntingdon EMBSI EMBSI
Maternal 20,000 10,000 10,000 10,000 2000 10,000 2000
No Reduced body Reduced body wt gain  Reduced food Reduced body weight  Reduced body wt Reduced body wt
adverse  wt gain and and food consumption  consumption at GD  gain at GD 11-14 changes, food and wt gains
effects food reflected in GD 5-21 8-11,11-14 interval for 10,000 and consumption at GD  reflected in GD5-21
consumption and GD 5-20 intervals, intervals reflected 20,000mg/m> 5-21 interval, and GDO0-21 at
over GD 8-11 respectively in GD 5-20 interval reflected in GD 5-21 decreased linear 10,000 and
interval trends 20,000mg/m>
Developmental 20,000 20,000 10,000 20,000 10,000 20,000 10,000
No No adverse Reduced fetal body No adverse effects Reduced fetal body No adverse effects Reduced fetal body
adverse  effects weights, increased weights weights; increased
effects stunted fetuses skeletal variations

increased number of stunted pups (G/TAME) and increased skeletal
variations (G/TBA).

Developmental effects resulting from gasoline abuse in humans
have been reported. Mental retardation, hypertonia, scaphocephaly
(premature fusion of the sagittal suture), poor postnatal head
growth and other developmental anomalies were identified in a
Canadian Amerindian community where sniffing of leaded gaso-
line and alcohol abuse were widespread (Hunter et al., 1979). How-
ever, the specific role of gasoline and its hydrocarbon components
could not be separated from the impact of lead and alcohol. Devel-
opmental studies in rats of whole unleaded gasoline (API, 1978)
and unleaded gasoline vapor containing 10% of the starting fuel
(Roberts et al., 2001) have demonstrated the absence of develop-
mental toxicity at doses up to 23,881 mg/m> consistent with the
NOAEL of 20,000 mg/m> BGVC reported here.

Some of the aromatic hydrocarbons contained in gasoline
produce developmental effects when tested alone. Toluene and
benzene have been identified as developmental toxicants by
regulatory agencies such as the European Chemicals Bureau and
California Environmental Protection Agency. However the percent-
ages of aromatic compounds in general and of toluene in particular
in the vapor of gasoline and gasoline blended with oxygenates are
well below those in whole gasoline. Benzene levels represented
1.5-2.0% of the total vapor, while toluene levels were 2.4-3.4% of
the total vapor and 7.6% of the liquid. Xylene levels were not mea-
sured in this study but eight-carbon aromatics represented less
than 1% of any of the test substances. Although the test program’s
highest exposure levels represented 50% of the Lower Explosive
Limits, the resulting attainable atmospheric concentrations of aro-
matic constituents were below those reported in the literature to
produce developmental effects.

Case reports indicate that toluene abuse during pregnancy
causes congenital malformations. Actual exposure levels for tolu-
ene abuse have been estimated at 5000 ppm [18,842 mg/m?] for
a glue-soaked cloth in a paper bag (Cavender, 1993). ACGIH
(1991) estimated that women who deliberately concentrate and
inhale toluene may experience exposure of 10,000 ppm
[>36,000 mg/m>] (Bukowski, 2001). Spontaneous abortion is the
most common reproductive effect associated with occupational
exposure to toluene and other chemical solvents, but most regula-
tory agencies have considered the evidence to be inconclusive
(ATSDR, 2000; European Commission, 2001). In animal studies,
toluene does not induce malformations but has caused lower birth
and postnatal weights and postnatal developmental delays, pri-
marily skeletal. Behavioral effects in offspring have been observed
when toluene is administered at high doses (1200-1500 ppm) dur-
ing periods of fetal brain development. Generally, inhalation
NOAEL for toluene for developmental effects range from 400 to
750 ppm [1500-2812 mg/m®] and LOAEL from doses of 1000 to
2000 ppm [3750-7500 mg/m>3] with exposure during periods of
organogenesis and major growth (US EPA, 2006D).

According to the European Risk Assessment of Benzene (ECB,
2003) epidemiology studies implicating benzene as a developmen-
tal toxicant have many limitations and there are insufficient data
to assess the effects of benzene on the human fetus. Studies are
limited largely because of concomitant exposure to other chemi-
cals, inadequate sample size and lack of quantification of exposure
levels. In animal studies by the inhalation route, no specific terato-
genic effects have been demonstrated with exposure to benzene
during organogenesis but fetotoxicity expressed as decreased fetal
body weight, delayed skeletal development and increased resorp-
tions associated with maternal stress have been reported (Kuna
and Kapp, 1981; Coate et al., 1984; Kuna et al.,, 1992; US EPA,
2006a). The issue of additivity of solvents was explored by
Medinsky et al., 1994 using physiologically-based pharmacokinetic
modeling. It was demonstrated that gasoline components can inhi-
bit benzene metabolism and thus expression of benzene toxicity.
The extent of inhibition depends on gasoline vapor concentration
and inhaled concentrations.

There are limited data addressing the effects of inhalation expo-
sure Xylene on pregnancy outcomes (US EPA, 2005). In animal
studies by the inhalation route, developmental effects on fetal
weights and skeletal variations have occurred primarily at dose
levels high enough to cause maternal stress in the range of
1000-2000 ppm (Saillenfait et al., 2003). No regulatory agencies
identify xylene as a developmental toxicant.

The oxygenates used in this test program, except for TBA, have
been evaluated individually for developmental toxicity potential.
The most studied of these is ethanol. Most of the reproductive
and developmental toxicity reports for ethanol deal with oral
abuse during pregnancy and the resulting fetal alcohol syndrome
(EU SIDS, 2005). No fertility or developmental effects were seen
at inhalation exposures up to 16,000 ppm (30,400 mg/m?). The
lowest reported NOAEL for fertility by the oral route was
2000 mg/kg body weight in rats, equivalent to a blood alcohol con-
centration of 1320 mg/l, although this was based on a significant
increase in the number of small pups rather than a direct effect
on fertility; such direct effects are not seen until much higher
doses. Physiologically-based pharmacokinetic modeling for
ethanol indicates that very high exposure levels are required to
produce blood ethanol concentrations associated with develop-
mental harm in rodents (Martin et al., 2012) The collective weight
of evidence is that the NOAEL for developmental effects in animals
is high, typically >6400 mg/kg body weight, compared to mater-
nally toxic effects at 3600 mg/kg body weight. The potential for
reproductive and developmental toxicity exists in humans from
deliberate over-consumption of ethanol. Blood ethanol concentra-
tions resulting from ethanol exposure by any other route are unli-
kely to produce reproductive or developmental effects.

Developmental studies conducted with the ether oxygenates
indicate a potential to produce adverse effects to prenatal
development at maternally toxic exposure levels. For MTBE, a
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developmental test on mice and rabbits indicated that exposure at
14,400 mg/m> on gestation days 6-15 resulted in reduced pup via-
bility and an increased incidence of cleft palate in mice at
28,800 mg/m> but no developmental effects were seen in rabbits
in this study (Bevan et al., 1997).

Testing of TAME alone in a developmental toxicity study in rats
resulted in a no-observable-adverse-effect level (NOAEL) of
250 ppm for maternal toxicity and 1500 ppm for developmental
toxicity in rats based on near-term fetal body weights. In mice,
TAME exposure resulted in reduced fetal body weight, cleft palate,
prenatal mortality, and increased variations along with reduced
maternal weights; the NOAEL values for maternal and develop-
mental toxicity were 250 ppm (Welsch et al., 2003).

Studies with ETBE were primarily performed by the oral route.
ETBE does not appear to be selectively toxic to reproduction or
embryofetal development in the absence of other manifestations
of general toxicity. No embryofetal effects were observed in rab-
bits. Early postnatal rat pup deaths show no clear dose-response
and have largely been attributed to total litter losses with accom-
panying evidence of maternal neglect or frank maternal morbidity
(dePeyser, 2010).

Exposure of pregnant Sprague-Dawley rats to DIPE by inhala-
tion at concentrations of 430, 3095, or 6745 ppm for 6 h/day on
GD 6-15 resulted in a slight reduction in body weight gain and a
significant decrease in food consumption for dams in the
6745 ppm group. A concentration-related increase in the incidence
of rudimentary 14th ribs was observed, but its significance was
uncertain. DIPE induced only a low order of toxicity in develop-
mental effects (Dalbey and Feuston, 1996).

No specific studies of TBA by the inhalation route were found.

Exposure to oxygenates alone seemed to produce minimal
developmental effects in laboratory animals at exposure concen-
trations higher than or equal to levels producing maternal toxicity.
Mice appeared to be more sensitive than rats or rabbits. Exposure
to vapor condensate of gasoline blended with these oxygenates
demonstrated either no developmental toxicity or effects only at
the highest dose tested in rats.

5. Conclusions

Exposure of pregnant rats to vapors of gasoline alone, or gaso-
line blended with various ethers or alcohols affected maternal
body weight gain and food consumption during gestation. Devel-
opmental effects occurred for G/DIPE, G/TAME, and G/TBA at expo-
sure levels greater than or equal to those that affected the dams.
Thus the components in evaporative emissions from vapors of gas-
oline or gasoline-oxygenate blends do not produce selective devel-
opmental toxicity in rats. Indeed the minimal effects to the general
health of the adult animals and fewer effects to prenatal develop-
ment suggest that evaporative emissions of gasoline and gasoline/
oxygenate blends are not selective developmental toxicants and
pose minimal risk to human prenatal development.
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