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Micronucleus and sister chromatid exchange (SCE) tests were performed for vapor condensate of baseline
gasoline (BGVC), or gasoline with oxygenates, methyl tert-butyl ether (G/MTBE), ethyl tert butyl ether (G/
ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), t-butyl alcohol (TBA), or ethanol (G/
EtOH). Sprague Dawley rats (the same 5/sex/group for both endpoints) were exposed to 0, 2000,
10,000, or 20,000 mg/m> of each condensate, 6 h/day, 5 days/week over 4 weeks. Positive controls (5/
sex/test) were given cyclophosphamide IP, 24 h prior to sacrifice at 5 mg/kg (SCE test) and 40 mg/kg
(micronucleus test). Blood was collected from the abdominal aorta for the SCE test and femurs removed
for the micronucleus test. Blood cell cultures were treated with 5 pig/ml bromodeoxyuridine (BrdU) for
SCE evaluation. No significant increases in micronucleated immature erythrocytes were observed for
any test material. Statistically significant increases in SCE were observed in rats given BGVC alone or
in female rats given G/MTBE. G/TAME induced increased SCE in both sexes at the highest dose only.
Although DNA perturbation was observed for several samples, DNA damage was not expressed as
increased micronuclei in bone marrow cells. Inclusion of oxygenates in gasoline did not increase the
effects of gasoline alone or produce a cytogenetic hazard.

© 2014 Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecom-

mons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The 1990 amendments to the Clean Air Act (CAA) mandated the
use of oxygenates in motor gasoline, and also required manufac-
turers of fuels and fuel additives to provide data to the U.S. Envi-
ronmental Protection Agency (EPA) regarding the potential
health effects of their products. As described in more detail in a
companion paper (Henley et al., 2014), requirements include inha-
lation exposures to evaporative emissions of the gasoline or addi-
tive in question. The health endpoints include assessments for
standard subchronic toxicity, neurotoxicity, genotoxicity, immuno-
toxicity, developmental and reproductive toxicity, and chronic tox-
icity/carcinogenicity. The results of chronic toxicity testing of
gasoline and gasoline combined with MTBE have already been
reported (Benson et al., 2011). This paper describes the results of
genotoxicity testing submitted to EPA. The animals evaluated for
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genotoxicity were exposed concurrently with animals involved in
a subchronic inhalation toxicity study of the materials described
above (Clark et al., 2014). Additional groups of animals were
exposed to the test materials concurrently to evaluate the effects
of exposure on immunotoxicity and neurotoxicity, the results of
which are described elsewhere (White et al., 2014; O’Callaghan
et al., 2014).

Genetic toxicity satellite studies of four week duration were
incorporated with thirteen week rat inhalation studies (Clark
et al., 2014) to assess the potential of seven vapor condensates of
baseline gasoline (BGVC), or baseline gasoline with oxygenates,
methyl tert-butyl ether (G/MTBE), ethyl tert butyl ether (G/ETBE),
t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), t-butyl
alcohol, a metabolite of MTBE and ETBE (G/TBA), or ethanol (G/
EtOH) to induce in vivo genetic effects. These condensates repre-
sent the more easily vaporized fractions of the various gasolines
and thus more accurately reproduce human exposure during vehi-
cle fueling and other operations. The assays employed as specified
in 211(b) alternative test rule (US EPA Docket, 1998a,b) were an
in vivo bone marrow erythrocyte micronucleus test and an
in vivo/in vitro peripheral blood sister chromatid exchange assay
in the same animals.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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The bone marrow micronucleus test (Matter and Schmid, 1971;
MacGregor et al., 1987) is a short term assay to identify chromo-
some damage and aneuploidy. Chromosome damage caused by a
test substance or its metabolite can result in the formation of
micronuclei containing lagging chromosome fragments or whole
chromosomes which are not incorporated in the nucleus of divid-
ing cells and remain as micronuclei in the cytoplasm of daughter
cells. Increased incidence of these micronucleated immature eryth-
rocytes is an indication of chromosome damage from recent expo-
sure to a chromosome damaging agent.

The sister chromatid exchange test (SCE) is a short term assay
for the detection of reciprocal exchanges of DNA between homolo-
gous loci of two sister chromatid strands of a duplicating chromo-
some (Latt et al, 1981; Perry et al, 1984). In these studies
peripheral blood lymphocytes are collected from inhalation
exposed rats, cultured, and labeled with bromodeoxyuridine
(BrdU) over two rounds of replication in culture to differentiate
the sister chromatid strands [M2 chromosome consists of one
chromatid unifilarly substituted with BrdU and the other bifilarly
substituted]. The chromatids of such chromosomes stain differen-
tially with Giemsa stain to detect exchanged DNA between sister
strands. The exchange involves DNA breakage and reunion and is
indicative of DNA perturbation but no genetic material is lost or
displaced to other sites on the chromatid.

2. Materials and methods

Sprague Dawley rats (5/sex/group) were exposed by inhalation
to BGVC, or G/MTBE, G/ETBE, G/TAME, G/DIPE, G/EtOH, or G/TBA at
concentrations of 0, 2000, 10,000, 20,000 mg/m?>, 6 h/day, 5 days a
week for a total of 20 exposures over 28 days as subgroups of
13 week rat inhalation studies performed at Huntingdon Life Sci-
ences (East Millstone, NJ). To reduce the number of animals
employed, specimens from the same animals were used for both
micronucleus and SCE endpoint evaluations but a separate positive
control group was used for each study. Generation and composi-
tion of the vapor concentrations as well as additional details on
the exposure methodology are reported elsewhere (Clark et al.,
2014). Twenty-four hours prior to sacrifice, non-exposed positive
control rats (5/sex/dose) were administered a single intraperito-
neal dose of cyclophosphamide (CAS No. 6055-19-2, Sigma Chem-
ical Co., lot #108HO0568, 99.2% pure) of 40 mg/kg for the
micronucleus test and 5.0 mg/kg for the SCE test. On the day after
the final exposure, all animals were sacrificed by CO2 asphyxiation,
peripheral blood (2-4 ml in sodium heparin tubes) was collected
from the abdominal aorta for SCE culture and bone marrow col-
lected from both femurs of each rat for the micronucleus test by
personnel from BioReliance Laboratories (Rockville, MD).

2.1. Micronucleus test

Studies were performed in accordance with US EPA guidelines
for the micronucleus assay 79.64 CFR vol. 59, No. 122, 27 June
1994 and Health Effects Test Guidelines OPPTS 870.5395, 1998.
After sacrifice and blood collection for SCE, bone marrow was col-
lected from both femurs of each rat, aspirated into a syringe con-
taining 0.5 ml fetal calf serum and flushed into a centrifuge tube
of serum. Cells were pelleted by centrifugation at 150g for 5 min,
supernatant removed and cell pellet resuspended in remaining
serum. A small drop of cell suspension was spread on a clean glass
slide (4 slides/rat), air dried, fixed by dipping in methanol for 3 min
and aged overnight or longer until stained. Two unstained slides/
animal and the refrigerated pellet were retained in storage at Hun-
tingdon Life Sciences (East Millstone, NJ). Two unstained slides per
animal were shipped via overnight delivery to Huntingdon Life Sci-

ences’ Eye Research Center (Eye Suffolk, UK) for processing and
evaluation. Upon receipt slides were stained by the modified Feul-
gen staining method which specifically stains DNA-containing
bodies a deep purple, immature erythrocytes blue and mature
erythrocytes orange by acridine orange counterstaining. Slides
were air dried and mounted under cover slips with DPX mountant
to produce permanent preparations. Slides were coded and exam-
ined by light microscopy to determine the incidence of micronu-
cleated cells in 2000 immature polychromatic erythrocytes per
animal. One slide/animal was examined, the other held in reserve
if needed. The proportion of immature erythrocytes for each ani-
mal was assessed by examination of at least 1000 total erythro-
cytes (mature and immature) to determine if cytotoxicity
[reflected as significant decrease in the proportion of immature
erythrocytes compared to control values] had occurred. The num-
ber of micronucleated mature erythrocytes in the same 1000 or
more cells was also recorded.

Non-parametric statistics were employed to compare results for
each treatment group with corresponding negative controls by sex
and sexes combined in each study. For incidences of micronucleat-
ed immature erythrocytes, exact one-sided p-values were calcu-
lated by permutation (CYTEL, 1995). Comparison of several dose
levels was made with the control using the Linear by Linear Asso-
ciation test for trend, in a step-down fashion if significance was
detected (Agresti et al., 1990); for individual inter-group compari-
sons (i.e. the positive control group) this procedure simplifies to a
straightforward permutation test (Gibbons, 1985). For assessment
of effects on the proportion of immature erythrocytes, equivalent
permutation tests based on rank scores were used, (i.e. exact ver-
sions of Wilcoxon’s sum of ranks test (Wilcoxon, 1945) and Jonc-
kheere’s test for trend, (Jonckheere, 1954; Kruskal and Wallis,
1952, 1953).

A positive response was indicated by a statistically significant
dose-related increase in the incidence of micronucleated immature
erythrocytes (MIE) for the treatment group compared with the
negative control group (p < 0.01); individual and/or group means
should exceed the laboratory historical control range. A negative
result was indicated where individual and group mean incidences
of micronucleated immature erythrocytes for the treated group
were not significantly greater than the negative control group
and these values fall within the historical control range for the
laboratory.

2.2. Sister chromatid exchange test

Studies were performed in accordance with US EPA guidelines for
the sister chromatid exchange test Health Effects Guidelines OPPTS
870.5915 (US EPA, 1998b). Blood samples for the SCE study were
transported to BioReliance Laboratories (Rockville, MD) immedi-
ately after sacrifice. Within 24 h after collection whole blood cul-
tures were prepared in duplicate per animal in culture medium
containing 20 pg/ml phytohemaglutinin and incubated at 37 °C. At
approximately 21 h of culture 5 pg/ml BrdU (Sigma Co., St. Louis,
MO) was added followed at 68 h by addition of 0.2 pg/ml colcemid.
At 72 h (51 h after BrdU introduction), the cells were collected by
centrifugation, the pellet resuspended in 5 m10.075 M KC1 and incu-
bated at 37 °C for 20 min. followed by addition of 0.5 ml of fixative
(methanol:glacial acetic acid, 3:1 v/v) to each tube. The cells were
collected by centrifugation, fixed and stored in fixative overnight
or longer at approximately 24 °C. Fixed cells were then centrifuged,
the supernatant was aspirated, and cells resuspended in 1 ml fresh
fixative twice, centrifuged and liquid decanted leaving 0.1 to
0.3 ml fixative above the cell pellet. One or 2 drops of cell suspension
were dropped on glass slides and stored overnight to air dry. -Dried
slides were stained by the modified Hoechst 33258 fluorescence-
plus-Giemsa technique (Perry and Wolff, 1974; Wolff and Perry,
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1974) Slides were prepared from all blood cultures, but only slides
from the first of each duplicate culture were evaluated. Duplicate
culture slides were stored unread with the study data to be available
if insufficient cells were usable on the first slide or initial results
required clarification. Slides were coded using random numbers
and examined under oil immersion.

A minimum of 25 second division metaphases/animal were
scored for SCE. At least 100 consecutive metaphase cells were eval-
uated for the number of cells in first, second and third division
metaphase per animal as an indicator of toxicity (cell cycle delay)
and 1000 cells scored for mitotic index/animal. The average gener-
ation time (AGT) was also estimated. Regression analysis (trend
analysis) and a one-tailed Dunnett’s t test for multiple comparisons
were performed to compare SCE frequency of test exposure levels
to negative controls, which was considered statistically significant
at p <0.5.

The test substance was considered positive if an exposure-level
response and statistically significant increase was observed over a
minimum of two exposure levels. A statistically significant
increase at the high exposure level with an exposure-level
response, although not a statistically significant increase at lower
exposure levels was assessed as suspect. A statistically significant
increase at one or more exposure levels with no evidence of an
exposure level response was assessed as equivocal or as negative
according to the magnitude of response and the number of expo-
sure levels affected.

2.3. Compliance
These studies were conducted in accordance with the United
States Environmental Protection Agency’s (EPA) Good Laboratory

Table 1a
Micronucleus assay results in rat bone marrow erythrocytes.

Practice Standards (US EPA, 1994), and complied with all appropri-
ate parts of the Animal Welfare Act Regulations (USDA, 1989,
1991). The study also met the requirements of EPA’s guidelines
for micronucleus tests (US EPA, 1998a) and sister chromatid
exchanges (US EPA, 1998b).

3. Results

The results of the genetic assays performed with baseline gaso-
line vapor condensate (BGVC) or vapor condensates generated
from baseline gasoline blended with MTBE, TAME, ETBE, DIPE,
TBA or ETOH are summarized in Table 1a (Micronucleus test),
Table 1b (Micronucleus test cytotoxicity) and Table 2 (Sister Chro-
matid Exchange test). In all studies the cyclophosphamide positive
controls produced statistically significant increases in the fre-
quency of micronucleated immature erythrocytes or increased sis-
ter chromatid exchange events, respectively. Results for other
endpoints within each assay (incidence of micronucleated mature
erythrocytes or average generation time and mitotic index for sis-
ter chromatid exchange assay) were not statistically different from
negative controls, and these data are not shown.

3.1. Micronucleus tests

No statistically significant increases in the frequency of micro-
nucleated immature erythrocytes (MIE) or positive dose response
trends were observed for either sex or sexes combined for rats
exposed to baseline gasoline vapor condensate (BGVC), G/MTBE,
G/TAME, G/DIPE or G/TBA. Although there were slight non-signifi-
cant increases in MIE in males exposed to 2000 and 10,000 mg/m?>

Test vapor Micronucleated immature erythrocytes (MIE) mean # std. dev. (frequency/2000 IE) Positive control
Control 2000 mg/m? 10,000 mg/m> 20,000 mg/m> CP
BGVC
Male 0.4+05 0.6+04 1.0+0.2 0.6+0.8 18.2+25"
Female 0.6 £0.7 0.8+0.7 0.6+0.5 0.6+0.8 9.8+3.6°
M&F 0.6 £0.7 0.7+£0.7 0.8+0.6 0.6+0.8 14.0+5.5°
G/MTBE
Male 1.8+1.5 20+19 1.2+04 1.2+0.8 19.2£6.5°
Female 24+2.1 0.8+0.8 0.6+0.5 1.8+1.3 10.6+3.6°
M&F 21+1.7 14%15 09+0.6 1.5%1.1 14.9+6.7°
G/EtOH
Male 0.0 £0.0° 0.0 £ 0.0 0.2+04° 0.6 £ 0.5° 14.2+5.3°
Female 02+04 0.8+1.1 0.0+0.0 1.0+x14 8.0+3.9"
M&F 0.1+03 04+038 0.1+03 0.8+1.0 11.1£55°
G/TAME
Male 1.0+1.7 1.6+0.9 04+0.5 0.8+0.8 13.2+9.7°
Female 0.4+09 08+1.3 04+0.5 0.8+0.0 14.0+10.3
M&F 07+13 1.2+1.1 04105 0.8+0.8 13.6+9.5°
G/ETBE
Male | 1.6+0.9 0.6+0.5 1.6+0.8 2.8+0.8 25.8+4.5"
Male 11 22+0.8 1.2+0.8 24+1.1 28+25 30+10.9°
Female [ 0.8+1.1 1.0+0.7 3.8+04° 20+2.0 19.6 +8.0°
Female II 14+1.1 32+1.8 32+19 26+09 17.6+5.1°
M&FI 1.2+1.0° 0.8 £ 0.6° 2.7+1.1° 2.4 +1.5° 227+19"
M&FII 1.8+1.0 22+1.7 28+15 27+1.8 19.6 +8.0°
G/DIPE
Male 08+0.4 1.0+£1.0 0.8+04 0.6+0.5 9.8+1.0°
Female 0.8+0.8 0.6 £0.5 1.0+0.7 08104 20.4+6.8"
M&F 0.8+0.6 0.8+0.8 09+0.6 0.7+0.5 15.1+7.5°
G/TBA
Male 22+09 0.8+04 24+15 14108 18.0£3.5°
Female 1.0+0.5 1.0+0.5 08+1.2 22+12 94+1.8°
M&F 1.6+1.5 09+0.6 1.6+1.6 1.8+1.1 13.7+5.9°

Positive control CP-cyclophosphamide 40 mg/kg.
2 p<0.01.
> p<0.001 permutation test.
¢ p<0.01 linear by linear trend test for dose response.
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Table 1b

Cytotoxicity results in rat bone marrow erythrocytes in the micronucleus assay.
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Test vapor Proportion of immature erythrocytes (% IE) in >1000 total erythrocytes/rat (mean * S.D.) Positive control
Control 2000 mg/m> 10,000 mg/m? 20,000 mg/m> CP 40 mg/kg
BGVC
Male 47 +3.9 37+9.9 42+5.1 42+7.7 30+52°
Female 56 +7.3° 48 +3.4° 48+3.0° 46+8.5* 23+43°"
M&F 51+7.7 43+9.8 45+5.6 44 +£8.0 27+62°
G/MTBE
Male 44+£3.2 40+6.0 38+5.0 38+2.6 25+7.2°
Female 47 £6.0 44+53 48+2.3 49+4.2 26+0.8°
M&F 45+4.8 42+538 43+6.4 43 +£6.8 26+4.8°"
G/EtOH
Male 46 £2.7 41+5.2 43+23 46 £3.1 33+£35°
Female 44+54 39+6.5 44+3.9 40+73 34+29°
M&F 45142 40£5.6 43£3.1 43163 33£3.1°
G/TAME
Male 49+2.1 51+2.0 49+0.9 50+24 44+35°
Female 49+2.0 50+4.3 51+1.7 50+3.7 45+2.8°
M&F 49+1.9 51+3.2 50+ 1.7 50+2.9 44+31°
G/ETBE
Male I 45+2.4 46+2.3 45+3.8 46+1.8 37+14°
Male II 50+2.7 51+26 51+44 48+7.5 32+38"°
Female I 45 +4.7 45+2.9 45+2.8 44 +£3.2 38+4.8°
Female I 49+4.6 44 +4.1 48 +4.2 47 £6.8 30+6.3°
M&FI 45+3.6 46+2.5 45+3.2 45+25 37+34°
M&FII 49+3.6 48+5.0 50+4.4 48 +6.8 31251°
G/DIPE
Male 51+3.8 53+19 49+2.0 53+3.6 44+28°"
Female 51+24 51+1.6 49+42 53+6.4 41+26°"
M&F 51+3.0 52+19 49+3.1 53+4.9 43+30°
G/TBA
Male 44 +£3.6 45+2.7 4422 44+£6.0 37£32°
Female 43+£48 47 £2.2 45+3.3 47 £0.7 4429
M&F 43 +£45 46+2.9 44 +3.1 46 £4.9 41+4.9

% IE = Proportion of immature erythrocytes (IE) divided by [IE + mature erythrocytes] in 1000 or more total erythrocytes. N = 5/sex/group. Combined N = 10/group.

2 p<001.

> <0.001 Permutation/Wilcoxin.
¢ BGVC female control value high for these data sets.

Table 2

Sister chromatid exchange results in rat peripheral lymphocytes.

Test vapor SCE/cell mean # std. dev. Positive control
Control 2000 mg/m?> 10,000 mg/m> 20,000 mg/m> cP

BGVC

Male 59+1.6 6.71.9° 8117 9.2+22% 18.3 £6.4°

Female 5.0+ 6.7 £2.2%° 9.0+2.1% 11.4 +2.4° 19.7+2.7°

G/MTBE

Male 75+23 7.7+18" 8.6+24%" 82+19° 22.9 £4.0°

Female 71£19 8.6+1.8"" 8.5+2.4™ 87+15" 223 £3.6°

G/EtOH

Male 61212 55+1.1° 57+1.3 58+1.6 25.1+4.2%

Female 62+12 57+15 6.1+13 58+1.7 22.4+35°

G/TAME

Male 6.8%2.0 6.0£1.7" 7.0£19° 82+2.1%° 19.7 £3.1°

Female 67+18 62+14° 69+1.8° 7.7 £2.3° 19.7 + 3.0°

G/ETBE

Male 58+1.3 54+14 57+13 61+1.4 21.0+2.8°

Female 5.4+ 58+13 6.0£15% 19.6+2.1°

G/DIPE

Male 75+18 74+1.7 6714 7.2 22.7+4.9°

Female 71£18 7.0£15 6914 6921 243 £4.3°

G/TBA

Male 66+1.8 6.4 6.5+1.7 62+18 21.9£3.5°

Female 62+1.6 6.4+1 65+1.6 63+1.6 22.1+34°

Positive control CP-cyclophosphamide 5 mg/kg.

4 p < 0.05 Dunnett’s t test (one tailed).

> p < 0.01 regression (trend) analysis for dose response.
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BGVC which dropped back in the 20,000 mg/m? group, no statisti-
cally significant trend in dose response was identified.

For rats exposed to G/EtOH no statistically significant increases
in frequency of MIEs or positive dose response trends were
observed in female rats or sexes combined. In male rats, a statisti-
cally significant dose response was seen with the trend test but
was not considered biologically relevant because individual male
and male group mean values were within the historical negative
control values for this laboratory [0.0-0.2 MIE (20% of test popula-
tion) and 0.6-0.8 MIE (16% of test population)] and the statistical
significance was enhanced by low MIE frequency in negative con-
trol males.

In the G/ETBE test, two sets of slides were evaluated for fre-
quency of MIE in bone marrow cells of treated rats. In the first
set of slides, no statistically significant increases in the frequency
of MIE were observed for male rats or sexes combined. Female rats
treated with 10,000 mg/m> G/ETBE demonstrated a statistically
significant increase in MIE. Linear by linear trend analysis of com-
bined sex data showed a statistically significant dose response
trend but analysis for individual sexes did not show a significant
dose response trend. To clarify the first set of results, the second
set of slides that had been held in reserve was evaluated. Although
some increases in group mean MIE were seen, none of the values
from the second set of slides were statistically significant com-
pared to negative controls for individual sexes or sexes combined
and the trend test for dose response was not significant for individ-
ual sexes or sexes combined. The second set of data did not confirm
the results of the first set. No cytotoxicity was seen; % IE in each
slide set was comparable to controls and similar to each other
(Table 1b).

Table 1b presents the proportion of immature erythrocytes as
measure of cytotoxicity in the micronucleus test. Proportions of
[E in exposed groups were generally comparable to control values
demonstrating a ratio of 45-50% immature erythrocytes in relation
to 1000-1200 total erythrocytes counted. The control % IE value for
female animals in the BGVC study was high compared to control
values for BGVC males and in the other studies resulting in a statis-
tically significant decrease in % IE at all dose groups which was not
expressed when sexes were combined. This effect was not consid-
ered relevant to treatment. The cyclophosphamide positive control
groups showed cellular toxicity expressed as statistically signifi-
cant lower % IE in most studies.

3.2. Sister chromatid exchange tests

Statistically significant increases in frequency of SCE were
observed in groups exposed to BGVC (females at all doses, 10,000
and 20,000 mg/m> males), G/MTBE (females all doses, 10,000 mg/
m> males) and G/TAME (20,000 mg/m> both sexes). Regression
(trend) analyses for dose response were statistically significant
for both sexes in these studies.

No statistically significant increases in SCE were observed for
male or female rats at any dose level and regression (trend) analy-
ses were negative for G/EtOH, G/DIPE and G/TBA exposed rats. In
the G/ETBE test, a statistically significant increase in SCE frequency
was observed for females in the 10,000 mg/m> group only and no
statistically significant increase in SCE was observed for males.
The regression (trend) analysis was negative for dose responses
in either sex.

4. Discussion

None of the vapor condensates induced biologically significant
micronucleus increases or cytogenetic damage in rat bone marrow
cells. Exposure to G/ETBE produced a statistically significant dose

response trend in one set of slides which was not reproducible
when a second set of slides was analyzed. Further, the SCE test
for DNA perturbation in the same animals was considered negative
as only 10,000 mg/m> females showed a statistically significant
increase and no dose response trend was evident. On this basis
G/ETBE was not demonstrated conclusively to induce genetic dam-
age in these test systems.

For all studies, micronucleated immature erythrocyte values
were compared with the laboratory historical control data.
Although at the lower end of the historical control ranges, all con-
trol and treated groups in the studies described here were consid-
ered acceptable. In reviewing the available literature, cytogenetic
studies of unadditized gasoline and its blending streams did not
report increases in chromosome aberrations or positive micronu-
cleus findings in laboratory animals (US EPA, 2008). Negative
results in standard cytogenetic tests for some individual oxygen-
ates have also been reported: MTBE (Bushy Run Research Center,
1989; Kado et al., 1998; McKee et al., 1997; Ward et al., 1995;
Zhou et al., 2000); TAME (Daughtrey and Bird, 1995), and ETBE
(McGregor, 2007).

Three of the vapor condensates [G/EtOH, G/DIPE, G/TBA] were
negative in both micronucleus and SCE tests indicating an absence
of DNA perturbation or cytogenetic hazard from inhalation of these
materials. The negative results for gasoline/ethanol blend [G/EtOH]
is consistent with the generally negative results in chromosome
and micronucleus assays for EtOH alone summarized by Phillips
and Jenkinson (2001), although some drinking water studies in
rodents showed small increases in SCE induction but no increased
SCEs in cultured cells were reported. TBA did not cause either cyto-
genetic damage in vivo in bone marrow cells or sister chromatid
exchanges in cultured Chinese hamster ovary cells (NTP, 1994).

Sister chromatid exchange test results were positive for base-
line gasoline vapor condensate in both sexes, positive for G/MTBE
females and equivocal for males due to a statistically significant
response at 10,000 mg/m? and a positive dose trend, and suspect
for G/TAME due to statistically significant increases in SCE at the
highest dose tested and a positive trend in dose response. Positive
results in the SCE assay showed that these vapor condensates were
capable of inducing DNA perturbation in peripheral blood lympho-
cytes of treated rats. However this DNA effect was not expressed as
cytogenetic damage in bone marrow erythrocytes of the same ani-
mals raising the question of whether a mutation had in fact
occurred. The exact mechanism of SCE formation and its signifi-
cance as a genotoxic endpoint is still unclear (Phillips and
Jenkinson, 2001).

Although gasoline is the base fuel for all the vapor condensates
tested, it is difficult to speculate on the reasons for the variation in
SCE results. The vapor fractions resulting from some of the oxygen-
ate blends may contain lower ratios of the chemical constituents
responsible for the induction of sister chromatid exchanges, or
the presence of biologically inactive constituents in these vapor
fractions may block the genetic action of other constituents result-
ing in lower or no increases in DNA perturbation events.

Positive results in the SCE DNA perturbation assay are consid-
ered a marker of chemical exposure but in the absence of positive
results in an assay measuring actual chromosome damage does not
represent mutation. It is not sufficient proof to consider a vapor
condensate to be clastogenic and induction of increased SCE alone
does not constitute a health concern.

5. Conclusions
Overall, exposure to vapor condensates of baseline gasoline or

gasoline/oxygenate blends demonstrated none or minimal cytoge-
netic activity. Exposures of rats to concentrations of up to 50% of
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the lower explosive limits of evaporative emissions (20,000 mg/
m?) from these condensates indicate minimal genetic impact at
concentrations well in excess of potential human exposure at refu-
eling, which typically measure less than 1.0 mg/m> but excursions
could reach 7.0 mg/m? for 5 min (Clayton, 1993; NATLSCO, 1995).
The results from both the micronucleus and SCE tests demonstrate
that the presence of oxygenates blended with gasoline do not
increase genetic expression induced by gasoline evaporative emis-
sions alone and present minimal likelihood of significant cytoge-
netic hazard.
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